Low energy electron imaging of domains and domain walls in magnesium-doped lithium niobate

نویسندگان

  • G. F. Nataf
  • P. Grysan
  • M. Guennou
  • J. Kreisel
  • D. Martinotti
  • C. L. Rountree
  • C. Mathieu
  • N. Barrett
چکیده

The understanding of domain structures, specifically domain walls, currently attracts a significant attention in the field of (multi)-ferroic materials. In this article, we analyze contrast formation in full field electron microscopy applied to domains and domain walls in the uniaxial ferroelectric lithium niobate, which presents a large 3.8 eV band gap and for which conductive domain walls have been reported. We show that the transition from Mirror Electron Microscopy (MEM - electrons reflected) to Low Energy Electron Microscopy (LEEM - electrons backscattered) gives rise to a robust contrast between domains with upwards (Pup) and downwards (Pdown) polarization, and provides a measure of the difference in surface potential between the domains. We demonstrate that out-of-focus conditions of imaging produce contrast inversion, due to image distortion induced by charged surfaces, and also carry information on the polarization direction in the domains. Finally, we show that the intensity profile at domain walls provides experimental evidence for a local stray, lateral electric field.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Periodic poling of magnesium-oxide-doped lithium niobate

In this article, poling characteristics and periodic poling of magnesium-oxide-doped lithium niobate ~MgLN! are described. Periodic poling was done by the electric field method, with which uniform gratings were produced. The domain wall velocity as a function of poling field was measured and used to determine conditions for self-terminating periodic poling. A computational model for the self-te...

متن کامل

Phenomenological theory of a single domain wall in uniaxial trigonal ferroelectrics: Lithium niobate and lithium tantalate

A phenomenological treatment of domain walls based on the Ginzburg-Landau-Devonshire theory is developed for uniaxial trigonal ferroelectrics, lithium niobate and lithium tantalate. The contributions to the domainwall energy from polarization and strain as a function of orientation are considered. Analytical expressions are developed that are analyzed numerically to determine the minimum polari...

متن کامل

The Formation of Self-Organized Domain Structures at Non-Polar Cuts of Lithium Niobate as a Result of Local Switching by an SPM Tip

We have studied experimentally the interaction of isolated needle-like domains created in an array via local switching using a biased scanning probe microscope (SPM) tip and visualized via piezoelectric force microscopy (PFM) at the non-polar cuts of MgO-doped lithium niobate (MgOLN) crystals. It has been found that the domain interaction leads to the intermittent quasiperiodic and chaotic beha...

متن کامل

Large-area regular nanodomain patterning in He-irradiated lithium niobate crystals.

Large-area ferroelectric nanodomain patterns, which are desirable for nonlinear optical applications, were generated in previously He-implanted lithium niobate crystals by applying voltage pulses to the tip of a scanning force microscope. The individual nanodomains were found to be of uniform size, which depended only on the inter-domain spacing and the pulse amplitude. We explain this behavior...

متن کامل

Charge gradient microscopy.

Here we present a simple and fast method to reliably image polarization charges using charge gradient microscopy (CGM). We collected the current from the grounded CGM probe while scanning a periodically poled lithium niobate single crystal and single-crystal LiTaO3 thin film on the Cr electrode. We observed current signals at the domains and domain walls originating from the displacement curren...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2016